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Abstract: Estimating tissue hypoxia using diffuse reflectance spectroscopy has been a tough
challenge. In this work, a novel approach for extracting tissue oxygen saturation (StO2) from
diffuse reflectance spectra is presented. The devised method is based on the second derivative
of visible light diffuse reflectance of tissue over 100 nm ranged from 500 nm to 600 nm. The
theoretical predictions of the method were confirmed by estimating StO2 from simulated diffuse
reflectance generated by Monte Carlo based look-up tables. Effect of scattering and blood
volume fraction on the StO2 estimation are quantified. Validation was also tested on clinical
measurements from oral mucosal tissue. The devised second derivative Diffuse reflectance
spectroscopy (SD-DRS) shows a potential application for detecting tumor hypoxia, in particular,
the differentiation between healthy and cancerous tissue.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Tissue oxygen saturation (StO2) is a key physiological parameter and a reliable marker of disease
activity by which oxygen delivery and uptake in biological tissue can be assessed. Thus, tissue
oxygenation is an indicator of tissue viability and functionality [1]. Abnormality in tissue
oxygenation can vary due to different pathologies and disorders such as diabetes, cardiovascular
diseases and cancer. Lately, local measurement of tissue oxygen saturation StO2 has been of
paramount importance particularly, for early detection of malignant tumors that has proven to
substantially reduce the mortality rate from cancer worldwide [2].

There exists a number of different modalities for measuring tissue oxygen saturation [3].
However, optical techniques have attracted a growing interest as a noninvasive technology. A
commonly used optical method for quantifying StO2 is Near infrared spectroscopy (NIRS).
Although, it has been extensively used due to its high penetration depth in tissue as well as
robustness and ease of use, NIRS requires large source-detector separation making it unsuitable
for local tissue oximetry. Additionally, the in vivo precision of NIRS-based oximetry has
repeatedly been reported to be insufficient for clinical practice [4] despite recent advancement to
improve its clinical outcomes [5].

Alternatively, diffuse reflectance spectroscopy (DRS) has been a promising modality that
provides valuable information about the optical properties of biological tissue of interest. Recently,
physiological parameters particularly oxygen saturation and blood volume fraction in tissue have
been reliably used for detecting tissue hypoxia that is associated with malignancy and cancer in
many organs of human body [6]. However, research on estimating tissue hypoxia has been mostly
restricted to limited number of analytical or empirical models [7]. For example, a quadratic
polynomial fit algorithm for estimating StO2 in human white brain matter from diffuse reflectance
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spectra was developed by Rejmstad et al. [8]. The second spectral derivative approach in near
infrared diffuse spectroscopy was first introduced by Cooper et al. [9] as a noninvasive modality
for measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path
length in the neonatal brain. More recently, Yeganeh et al. [10] used first and second derivatives
in near infrared region for measuring baseline values and changes in the tissue chromophore
concentrations.

Previously, research has focused on utilizing near infrared spectroscopy for estimating total
hemoglobin and oxygen saturation or a combination of visible and near infrared spectroscopy.
Brouwer de Koning et al. [11] investigated diffuse reflectance spectroscopy over broad wavelength
range from 400 to 1600 nm for discriminating oral cavity tumor from healthy oral mucosal tissue
as a guiding tool for oral cancer excision.

This focus has been shifted lately to the use of visible spectroscopy for tissue diagnosis. Chen
et al. [12] presented a method for estimating oxygen saturation from diffuse reflectance spectra
using differential wavelet transformation. Also, Hu et al. [13] provided a rapid ratiometric
analysis for estimating tissue hemoglobin concentration and oxygen saturation from measured
tissue diffuse reflectance spectra at specific wavelengths in the visible range of spectrum. In
addition, Nasseri et al. [14] developed OxyVLS oximeter based on visible light for measuring
tissue oxygen saturation StO2 locally and independent of scattering. However, it has not been
proven clinically.

In this paper, we present a simple yet effective method to extract tissue oxygen saturation in
the visible wavelength range from 500 to 600 nm based on characteristics of second derivative
peaks of diffuse reflectance spectra. Tissue blood volume fraction and scattering effects on StO2
are analyzed and discussed.

2. Materials and Methods

2.1. Theory

It is well known that hemoglobin can be considered a primary absorber for skin and epithelial
tissue where tumors develop most. Diffuse reflectance spectra from hemoglobin are characterized
by two dips and two humps related to oxygenated hemoglobin and deoxygenated hemoglobin as
shown in Fig. 1(a) in which spectra were plotted using data taken from [15]. Also, the area of
these humps and dips can be varied with different concentration of oxygenated and deoxygenated
hemoglobin and thus reflect the variation in tissue oxygen saturation. The dips are featured by
two specific wavelengths 543 and 577 nm as presented in Fig. 1(b).

Mathematically, either dip characterizing the diffuse reflectance spectrum, in the 500 to 600 nm
range, can be modeled as a reversed gaussian function expressed as

DRS(λ) = −Ae−
(λ−λ0)

2

2∆λ2 (1)

where, A represents the amplitude of the dip, λ0 is the wavelength corresponding to the location
of the peak center, and ∆λ is a parameter for controlling the width of the dip as shown in Fig. 1(c)
in the upper graph. The first derivative (FD) of the diffuse reflectance spectra in the above
mentioned wavelength range can be described by its rate of change or reflectance with respect to
wavelength.

Therefore, the second derivative (SD) is by definition the rate of change of the slope, thus,
representing the curvature of the spectrum. Consequently, the first and second derivatives can
provide information on morphological variations in diffuse reflectance over this range and hence
indirect evaluation of tissue oxygen saturation.

As for diffuse reflectance, the FD is the rate of change of reflectance with respect to wavelength.
It starts and finishes at zero. It also passes through zero at a wavelength that corresponds to the
maximum of the reflectance as can be seen in Fig. 1(c) in the middle graph.
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Fig. 1. (a) Deoxygenated and oxygenated hemoglobin absorption spectra in the wavelength
range 500–600 nm. (b) Diffuse reflectance spectrum of hemoglobin marked by varying areas
of the oxygenated hemoglobin dips, dip(543) and dip(577) . (c) Upper: reversed gaussian pulse.
Middle: first derivative of the pulse. Lower: second derivative of the pulse characterized by
inflection points Ip1 and Ip2.

Either side of this point are positive and negative bands with maximum and minimum at the
same wavelengths as the inflection points Ip1 and Ip2 in the reflectance as shown in Fig. 1(c) in
the lower graph.

For second order derivative, the most characteristic feature is a positive band with maximum
at the same wavelength as the minimum on the zero-order DRS. It can also be noted that the peak
area in the SD of reflectance that is bounded by the inflection points is directly proportional to the
size of the area of the gaussian pulse. The following Eqs. (2) and (3) can be used to compute the
first and second derivatives (DRS′(λ) and DRS′′(λ) respectively). They are based on the central
difference approximation to the FD and SD of diffuse reflectance spectrum, given by

DRS′(λ) = dDRS/dλ ≃ (DRS(λ + h) − DRS(λ − h))/2h (2)

DRS′′(λ) = d2DRS/dλ2 ≃ (DRS(λ + h) − 2DRS(λ) + DRS(λ − h))/h2 (3)

where h is the step length. The resulting peak area can also be calculated by integrating the second
derivative over an interval defined by the inflection points Ip1 and Ip2 given by the following
formula

Area = ∫
Ip2
Ip1

DRS′′(λ)d(λ) (4)

In this work FD, SD, and the area were calculated numerically using MATLAB 2016
(Mathworks Inc.).

To simulate diffuse reflectance in a semi-infinite single layer tissue model, a look-up table
based on Monte Carlo simulation MC-LUT [16] was created for the forward model. Although, a
number of different methods exist for generating diffuse reflectance spectra, in this study MC-LUT
method was preferred over others as it is more accurate than experimental LUT and diffusion
approximation-based methods. Also, with advanced computational capabilities, it has become
easier to implement and more importantly can be adapted to more complex probe and tissue
geometries [16]. In the MC-LUT used in this work, the absorption coefficient spanned from 0.1
to 35 cm−1 with 10 increments (0.1,0.5,1,5,10,15,20,25,30,35). Likewise, the reduced scattering
coefficient spanned from 0.1 to 35 cm−1 with 10 increments (0.1,0.5,1,5,10,15,20,25,30,35).
Interpolation between values in the LUT, with 50 points across absorption and scattering ranges
selected, was implemented by cubic splines. 106 photons were used for all simulations using
MC-LUT.
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The reduced scattering coefficient used in the forward model [17] was expressed by

µ
/
s(λ) = µ

/
s(λ0).(

λ

λ0
)−B (5)

where λ0 is 600 nm and B is the scattering power. The absorption coefficient was calculated by
the following expression [18]

µa(λ) =
∑︂N

i=1
ln(10)εi(λ)Ci (6)

where εi(λ) is the extinction coefficient of a given chromophore, Ci is the concentration of that
chromophore, and N is the number of chromophores. The chromophores assumed in tissue in
this work were oxygenated hemoglobin and deoxygenated hemoglobin. Then, MC-LUT was
used to generate a modeled reflectance spectrum followed by interpolation using cubic splines.
The anisotropy coefficient (g-factor) value for tissue was set at 0.9 for all simulations. Although
optical properties together with physiological parameters such as blood volume fraction and
StO2 are all affected by anisotropy factor [19], the choice of this value was based on the finding
of previous work of Graaff et al. [20]. They found that all values of g factor larger than 0.8
will be the same for any values of scattering coefficient and g factor that generate the same
reduced scattering coefficient. Therefore, the assumptions regarding anisotropy in this study are
reasonable and justified as also reported by Hennessy et al. [16].

For the simulation study, it was assumed that the refractive index of the tissue matched that of
the fiber and was set to 1.4. This assumption was based on the fact that the fiber core material is
silica fixed in epoxy (for all illumination and collection fibers simulated) with a refractive index of
1.4 and the refractive index of tissue is nearly 1.37. The reflectivity of the stainless-steel housing
tube of the fiber probe was not considered in the simulation study. In fact, our specific probe
geometry used in the experimental measurements was taken into account in the simulation where
the following probe parameters were considered: number of fibers (one for illumination and six
for collection), diameter of all illumination and collection fibers is the same that is, 200 µm, the
distance from the center of the illumination fiber to the center of the collection fiber was set to
250 µm. Numerical aperture for all fibers was set to 0.22.

2.2. Experimental setup

In order to evaluate the performance of the proposed approach in clinical settings, Diffuse
reflectance spectra of oral mucosal tissue were acquired for which clinical measurements were
taken from different locations of the suspicious site inside the oral cavity. All clinical investigations
conducted in this work were approved by the ethical committee at Damascus university and in
accordance with Helsinki guidelines. Informed consent was also obtained from all subjects prior
to DRS measurements. Diffuse reflectance spectra were collected using a compact and portable
spectrometer (USB4000 FL, Ocean Optics Inc., Dunedin, FL, USA). For Illumination of the
examined tissue, a broadband light source from 400 to 2000nm (HL-2000-FHSA-HP, Ocean
Optics Inc., Dunedin, FL, USA) was used.

A bifurcated bundle probe (six fibers for collection around one central fiber for illumination)
was used to deliver the light to tissue and collect the diffuse reflected light from within the tissue
back to the spectrometer as illustrated in Fig. 2(a). The fibers were made from silica and housed
in stainless steel tube. The fiber diameter of the illuminating fiber was 200 µm, six collection
fibers with diameter of 200 µm each, and a collection-illumination separation (from center to
center) was 250 µm. Diffuse reflectance measurements were calibrated before each session using
a reflectance standard (WS-1, Ocean Optics Inc., Dunedin, FL, USA).

The spectrometer was connected to a laptop for controlling the spectroscopic system via
Spectrasuit software (Ocean Optics Inc., Dunedin, FL, USA) and then the collected spectra were
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Fig. 2. (a) Schematic view of the optical setup for second derivative diffuse reflectance
Spectroscopy (SD-DRS). (b) Workflow of the second derivative spectroscopy analysis of
DRS spectra for StO2 evaluation.

further processed and analyzed offline using MATLAB. Immediately after performing the optical
measurements, a mucosal biopsy from the measurement site was taken for histopathological
evaluation by a single pathologist blinded to the optical measurement.

Figure 2(b) shows the workflow of StO2 estimation. The measured reflectance spectra were
preprocessed using a Savitzky-Golay filter to smooth the spectrum. SG filter window length and
polynomial order used in this study were 7 and 2 respectively. This was followed by spectral
normalization by dividing the spectrum by its maximum value over the wavelength range of
interest from 500 to 600 nm. Then, FD and SD were calculated numerically using MATLAB and
based on Eqs. (2) and (3). Further peak analysis including area calculation was accomplished
using Eq. (4) and hence, the StO2 can be estimated in relation to the area of dip(543) and dip(577) .

3. Results

The efficiency of the proposed method to extract StO2 was evaluated in simulated DRS spectra
where level of oxygen saturation ranged from 10–100%. Figure 3 shows an example of the
generated forward model of diffuse reflectance.

Optical properties used in this simulation study are as follows: total hemoglobin expressed as
blood volume fraction (BVF): 2%, the scattering power B was set at 1.2, and µ/s(λ0) was given a
value of 17 cm−1. Also, BVF (2%) was selected as it represents the blood volume fraction in skin
and epithelial tissue for normal tissue.

Reduced scattering coefficient (17 cm−1) was also selected as an average value that represents
different types of biological tissue. Both selected values fall within ranges of these parameters
found in the literature for experimental measurements. These values were taken from the literature
and considered normal values for healthy tissue [17].
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Fig. 3. Simulated diffuse reflectance spectrum for 100% oxygen saturation.

After running the simulation, a set of diffuse reflectance spectra for each oxygenation level
from 10% to 100% were generated. Equations (5) and (6) were used in the simulation process to
generate the diffuse reflectance DRS spectra for different levels of StO2. Afterwards, the first and
second derivatives of the DRS spectra were determined in MATLAB and the area under the curve
corresponding to dip(543) and dip(577) was calculated by numerical integration in MATLAB. For
numerical integration, the wavelength interval for each area is defined by the width of the area that
is determined using the first derivative as mentioned earlier. The number of integration points is
the number of wavelengths occupied by the width of the peak (i.e., wavelength resolution on the
x-axis which was 1 nm in this study).

Figures 4(a) and 4(b) show computed area of the second derivative spectrum as a function
of the tissue oxygen saturation StO2 for both dip(543) and dip(577) . Where area 1 is the area of
the second derivative peak corresponding to dip(543) and its width is defined by the inflection
points that are determined by the first derivative. Likewise, area 2 is the area of the second
derivative peak corresponding to dip(577) and its width is defined by the inflection points that are
determined by the first derivative.

Fig. 4. (a) Calculated area1 as a function of StO2. (b) Calculated area 2 as a function
of StO2. (c) Calculated area corresponding to dip(577) as a function of the tissue oxygen
saturation StO2 with varying levels of reduced scattering coefficient.

It can be observed that oxygen saturation is directly proportional to both areas of second
derivative of oxygenated hemoglobin dips. However, one can notice that the first area values
of the second derivative cannot be clearly differentiated for low levels of oxygen saturation
(StO2 < 30%). Since dip(577) is narrower and of higher amplitude compared to dip(543) as shown
previously in Fig. 1(a), the focus on this study will be on dip(577) of diffuse reflectance spectrum.

3.1. Effect of scattering

To investigate the effect of scattering on the evaluation of tissue saturation, the analysis workflow
shown in Fig. 2(b) was implemented for different values of reduced scattering coefficient (at
600 nm) that cover the measured values for healthy and diseased biological tissue i.e. in the range
of 5- 40 cm−1. This range was selected based on literature data regarding scattering coefficients
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for different biological tissue collected by Jacques, S. [17]. The selected range represents most
of scattering coefficients of different biological tissue. Consequently, the computed area of the
second derivative of dip(577) as a function of the oxygen saturation is demonstrated in Fig. 4(c).
A simple linear regression model was fitted to the data to investigate the relationship between
StO2 level and the area of the second derivative peak corresponding to dip(577) .

Figure 4(c) confirms a very strong positive linear relationship between the two and a simple linear
regression showed a significant relationship between StO2 and area of the peak corresponding
to dip(577) (p< 0.001). The linear fitting model is given by the following formula

Area = 0.001148 ∗ StO2 + 0.008226 (7)

This model can be used to estimate the level of oxygen saturation after computing the area of
the second derivative peak corresponding to dip(577) . Figure 5 shows three oxygen saturation
levels 10%, 50%, and 100% estimated using Eq. (7) for three simulated diffuse reflectance
spectra.

Fig. 5. Simulated diffuse reflectance spectra in the wavelength from 500 to 600 nm for
different levels of StO2 while the BVF was set at 2%.

3.2. Effect of blood volume fraction

In order to quantify the effect of the blood volume on the presented method, a similar analysis
workflow was repeated and tissue saturation was estimated using second derivative for different
blood volume fraction levels ranged from 0.1% to 7% as this range represents BVF values in
different pathological conditions. Zhong et al. [21] showed that the blood volume in skin of
different types is around 1.5%. Also, the selected range represents different pathophysiological
conditions such as cancer especially epithelial tissue where tumors develop mostly as reported by
Amelink et al. [22]. They found that for normal oral tissue, the average BVF value was 3.6 and
4.1% for tumors on average.

Figure 6 shows a sample of simulated diffuse reflectance spectra in the visible window i.e.
from 500 to 600 nm for different levels of BVF and different levels of StO2.

It can be noticed that diffuse reflectance spectra are dependent on BVF as well as StO2 levels.
As a result, the effect of BVF has to be considered for reliable evaluation of StO2. To that end, the
reflectance value at dip(577) can be used as a spectral feature for quantification of BVF in tissue.
This value is related to BVF for a given oxygen saturation level. Also, this value, representing the
variation in intensity of normalized reflectance, is directly proportional to StO2 for a given level
of BVF as visualized in Fig. 6.

Once the BVF level is determined, the StO2 based on second derivative of dip(577) can be
estimated. To compare the performance of the proposed method, the analysis workflow mentioned
above was applied to estimate StO2 at different levels of BVF (1,3,5, and 7%).
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Fig. 6. Simulated diffuse reflectance spectra in the subrange from 500 to 600 nm for different
BVF levels and for different StO2 levels. Vertical axis denotes the normalized reflectance in
all graphs.

Diffuse reflectance spectra in the wavelength range of interest with increasing levels of BVF are
displayed in Fig. 7(a) for different levels of StO2. Likewise, Fig. 7(b) shows a linear relationship
between computed area and StO2 for different levels of blood volume. It is evident from Fig. 7(a)
that change in reflectance is remarkably larger with increased levels in blood volume fraction as
expected. On the other hand, Fig. 7(b) illustrates the trend of calculated area as a function of
StO2 over the range of blood volume fraction levels examined. It is clearly evident from Fig. 7(b)
that smaller area of SD-DRS that corresponds to low level of StO2 is relatively independent on
BVF. This is particularly important for tissue hypoxia in tumors. As tissue oxygenation levels
increase in tissue, this dependency becomes remarkably higher.

Fig. 7. (a) Diffuse reflectance at dip(577) as a function of BVF for different StO2 levels. (b)
Calculated Area of second derivative of dip(577) as a function of StO2 for different levels of
BVF.

Another effective way to quantify the variation of intensity of diffuse reflectance (for both
normalized and non-normalized reflectance) over the whole range from 500 to 600 nm is by
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calculating the area in which the variation in reflectance intensity occurs. For DR spectra
measurements in this work, BVF was estimated by calculating the area of trapezium defined by
the diffuse reflectance spectra. The left and right sides (vertical) of the trapezium are parallel and
located at the 500 nm and 600 nm on the wavelength axis. The lower side of the trapezium is
horizontal and located at the minimum value of DRS intensity on the reflectance axis. Finally,
the upper side of the trapezium is defined by the line that connects the reflectance at 500 nm and
the reflectance at 600 nm as depicted in Fig. 8.

Fig. 8. BVF evaluation by calculating the area of the trapezium covering the diffuse
reflectance variation in the wavelength range from 500 to 600 nm.

Consequently, area of SD-DRS at dip(577) can be evaluated as a sparse matrix mapped to BVF
and StO2 space. This matrix can be used to estimate StO2 for a given value of BVF and computed
area of SD-DRS at dip(577) . In other words, the area of SD-DRS of dip(577) is a function of BVF
and StO2.

Once the BVF is determined (by calculating the area of trapezium as described above) and the
area of SD-DRS at dip(577) is calculated, the corresponding StO2 can be interpolated from the 2D
matrix with varying levels of BVF horizontally and varying levels of StO2 vertically together
with area of SD-DRS at dip(577) values assigned to each element of the matrix.

3.3. Application to clinical diffuse reflectance spectra

The SD-DRS presented in this work was validated on experimental data collected from realistic
clinical measurements taken from oral mucosal tissue for both healthy oral tissue as well as
benign and malignant oral lesions.

Figure 9(a) displays the estimated StO2 level in three measured diffuse reflectance spectra
from mucosal tissue. One can notice the remarkable association between StO2 and the shape of
spectrum, in particular the flattened oxygenated hemoglobin dips i.e., dip(543) and dip(577) as the
StO2 decreases.

Some recruited patients had multiple lesions in the oral cavity but only measured spectra from
lesions that were histopathologically proven were included in the analysis. The sample was
divided into three groups. These are: normal (n=117), benign (n=47), and dysplasia/cancer
(n=21). The results presented in Fig. 9(b) indicate that good discrimination between all groups is
possible with the SD-DRS. A Kruskal-Wallis test provided very strong evidence of a difference
(p< 0.0001) between the mean ranks of the three tissue groups. A multiple comparison test
(two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli) showed significant
difference between groups.



Research Article Vol. 4, No. 2 / 15 February 2021 / OSA Continuum 659

Fig. 9. (a) Estimated StO2 for different measured diffuse reflectance spectra. (b) Estimated
StO2 using SD-DRS for healthy, benign, and cancerous tissues.

4. Discussion

In this work, a straightforward spectroscopic method for quantitative evaluation of tissue oxygen
saturation StO2 is presented. The method based on second derivative spectroscopy was used to
convert the resulting spectral feature into StO2 values. To the best of our knowledge this is the
first study that demonstrates the capability of SD-DRS to estimate tissue oxygen saturation using
a simple measuring method.

By observing the shape of diffuse reflectance spectrum in the wavelength range from 500 to
600 nm, one can see that 100% of StO2 is corresponding to “w” shape of the spectrum [23]
and 0% of StO2 is corresponding to “U” shape of the spectrum as a result of disappearance
of dip(543) and dip(577) . This was demonstrated with our findings as displayed in Figs. 5 and
9(a) for both simulated and measured DRS. However, for spectra corresponding to StO2 levels
lower than 10%, one can still see a little difference in shape between these spectra resulting in
slight difference in the calculated area 2. In fact, the “U” shape for StO2 levels that are lower
than 10% change towards a “V” shape instead of “U” shape as shown in Fig. 10(a). This can be
explained by the fact that, for very low levels of StO2 (from 0 to 10%), deoxygenated hemoglobin
becomes the dominant chromophore for which the diffuse reflectance minimum can be seen at
560 nm featuring the absorption peak of deoxygenated hemoglobin. As a result, it can be said
that the SD-DRS method exhibits lower differentiation capability for StO2 level below 10% in
comparison to higher levels.

Fig. 10. (a) Simulated diffuse reflectance spectra for low levels of StO2. (b) dip(577) of
Simulated DRS and its first and second derivatives, FD and SD repectively. (c) dip(577) of
measured data from oral tissue and its first and second derivatives.
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Although, spectral analysis applied to the first dip should theoretically give similar results to
the second dip, values of StO2 can be estimated robustly over wider range of tissue oxygenation
using dip(577) . This may be attributed to the narrower FWHM and higher amplitude of the
dip(577) compared to dip(543) . Another reason for opting for the second dip is that it can be
distinctly identified in clinically measured diffuse reflectance spectra as was observed in the
measured spectra.

As mentioned earlier, the developed SD-DRS assumed that hemoglobin is the dominant
absorber in simulated reflectance however, in vivo measurements on oral tissue and on other
types of tissue in general, different physiological absorbing structures may affect the shape
of the reflectance, that is, the characteristics of the gaussian peaks that mimic the dips of the
oxygenated hemoglobin can be altered in shape. Figures 10(b) and 10(c) depict the difference
between first and second derivative of dip(577) in simulated DRS and first and second derivatives
of dip(577) in measured DRS from oral mucosal tissue. Clearly, the dip in measured DRS becomes
more flattened, with larger FWHM, and asymmetric in relation to 577 nm wavelength. This
demonstrates the contribution of other absorption and scattering effects to the measured DRS.
This in turn, may lead to wider range of StO2 and possibly unexpected results relating to the
extreme unphysiological values of StO2. However, one possible way to rectify this could be by
introducing a correction factor based on experimental measurements using optical phantoms
with pre-set values of StO2 and BVF. Furthermore, the estimation procedure worked well for
the simulated reflectance in this study but for some real DRS measurements this has not been
the case. This can be explained primarily by the difference in shape between simulated and
measured reflectance. The morphological change in the spectrum can be caused when the
distance between the probe and the tissue surface is not constant. A fixed distance is probably
difficult to maintain in practice. However, a viable solution to this problem can be achieved
through a proper mechanical design of the probe.

Despite this limitation, the proposed method provided a capability to evaluate tissue hypoxia
and differentiate between intact and malignant tissues.

Additionally, the findings of this study are in good agreement with other works [24]. Bard et
al. [25] found that endobroncho tumors were characterized by lower blood oxygenation. Also,
Fawzy et al. [26] showed that malignant lesions had differences in blood volume fraction and
oxygen saturation when compared to normal or benign lesions.

More importantly, our results confirm the association between tissue oxygen saturation and
tissue transformation, in particular, tumor progression. Moreover, our findings, with regard to
oxygen saturation levels resulted from the application of SD-DRS to oral tissue, are in accord
with recent studies. For instance, a significant decrease in microvascular oxygenation in tumor
tissue in comparison with healthy tissue was measured by Amelink et al. [27] as well as Stephen
et al. [28]. As a result, SD-DRS offers high sensitivity to subtle changes in StO2 making it a
promising tool for accurate determination of tissue hypoxia in premalignant tissue, in particular,
the contrast between tissue oxygenation in benign and malignant tissue. This may offer rapid
noninvasive and biopsy-free diagnosis of suspicious lesions.

Accurate classification for the range of StO2 values can be determined by investigating larger
datasets of clinical measurement of diffuse reflectance spectroscopy from different stages of
tissue transformation caused by malignancy or/and cancer. Although, in this study, acceptable
differentiation between normal and benign tissue on the one hand (p<0.0001) and between
normal and cancerous tissue on the other hand ((p<0.0001)) have been attained. Differentiation
between benign and cancer (p=0.0272) can be further improved using larger dataset for benign
and malignant tumors. Another possible area of investigation is the application of the devised
technique for retrieval of StO2 from different types of cancer such as skin, breast, and cervical
cancer to name but a few.
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As for scattering, the results of this study showed that scattering effect on the StO2 estimated by
SD-DRS is minimal and the variation of the StO2 values can only account for up to a maximum
of 4% as shown in Fig. 4(c). This is comparable to prior work of Hu et al. [13], they developed a
simple radiometric analysis independent of scattering for quantification of tissue oxygenation
using two wavelengths in the visible range.

Although our devised method is independent of scattering, it should be noted that the results
presented in this work are subject to some uncertainties. That is, SD-DRS can be sensitive to
the factors that may influence the measured spectra, for instance, alterations in probe pressure
on the tissue surface affect absorption in tissue due to decreased hemoglobin as a result of
increased pressure. Previous studies related to this issue have shown that the probe pressure
significantly influences the reflectance and hence optical properties as well as physiological
parameters extracted from diffuse reflectance spectra of biological tissues in vivo as reported
by Popov et al. [29]. In vivo probe pressure effect on DRS was also investigated on different
locations on human skin by Lim et al. [30]. They concluded that long-term probe pressure
effects can have significant effects on physiological properties, even at the lowest pressure. while
short-term (up to 2 s) light probe pressure effects are minimal. Their resulting clinical acquisition
pressure is effectively less than the weight of the probe resting on the lesion. Thus, pressure
effects on clinical measurements rest comfortably within the first two seconds of the pressure
measurements as reported by them. For this paper, we assumed that the pressure effect on DRS is
minimal and hence negligible. In addition, the problem of probe pressure should be mitigated by
proper design of the DRS measuring probe in order to avoid errors in estimating parameters from
DRS spectra and that is not only limited to BVF and StO2 but also for all other optical properties
and physiological parameters affected.

Another possible issue that may explain the variation in StO2 extraction is that the second
derivative is very sensitive to subtle changes in the diffuse reflectance. Thus preprocessing
is essential for spectral analysis [31]. Savitzky-Golay (SG) filter was used in this paper as a
preprocessing technique for smoothing the spectra. SG filter has more advantages over commonly
used moving average filter. Also, SG filter can tract the spectrum more closely and account for
transient effect in comparison with moving average filters. More importantly, it removes delays
in the preprocessed spectrum at the beginning and end of the spectrum.

Since the proposed measuring method in this study relies heavily on second derivative, any
noise in the spectra can be greatly amplified after taking derivatives and could lead to errors in
area calculation and as a result inaccurate StO2 level. Therefore, spectra should be smoothed
before taking derivatives and applying this filter should be treated with caution to ensure adequate
smoothing in the spectrum. In addition, SG filter is based on polynomial fitting while preserving
the trends in the spectrum. SG filters performance can be controlled with two parameters: the
window length of the filter (number of points to be considered) and the order of polynomial
fitted to these points. In order to avoid any undesired attenuation in the spectrum after taking
derivatives the window length can be adjusted. The larger the window length the greater the
attenuation in the derivatives. This can be followed by adjusting the polynomial order as the
maximum value for polynomial order must be one less than the window length. SG filter window
length and polynomial order used in this study were 7 and 2 respectively. These values were
found to be appropriate for the preprocessing of our simulated and measured diffuse reflectance
spectra.

It is noteworthy to say that SD-DRS requires prior knowledge of total hemoglobin in order to
reliably estimate StO2 and possibly detect tissue hypoxia. Variation in the intensity of diffuse
reflectance in the range from 500 to 600 nm can also be used as a spectral feature for determination
of total hemoglobin concentration that can be used later for retrieval of StO2 level from 2D
matrix.
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All in all, the steps for implementing this method for StO2 evaluation based on SD-DRS can
be summarized by the flowchart given in Fig. 11. The developed approach only requires the
investigation of diffuse reflectance over a relatively narrow spectral window of 100 nm. This
is a major improvement over previous works such as Chen, P. et. al [12] where estimating of
oxygen saturation required spectral information from different wavelengths or windows starting
from 450 nm to 600 nm. This spectral region where Hb absorption is very strong and limits the
volume of tissue investigated by DRS.

Fig. 11. Flowchart of the StO2. evaluation scheme based on SD-DRS.

Although the findings presented in this study are of specific interest for tissue hypoxia in
tumors, applying these outcomes to other disorders related to tissue oxygenation may result
in better prognosis in other applications widely used in biomedical optics. That would open
the way to further investigate other factors such as age, gender, etc. that may affect the tissue
oxygenation in tissue and hence, offering important optical means for disease diagnosis, treatment
and prognosis monitoring.

5. Conclusion

In summary, we have proposed a novel, independent of scattering, calibration-free and non-
invasive spectroscopic method for evaluation of tissue hypoxia based on second derivative diffuse
reflectance spectroscopy, the presented method was tested on simulated reflectance spectra and
validated on clinical reflectance measurements. This opens the potential for low-cost, rapid and
robust monitoring of tissue oxygenation non-invasively. Further research is needed to explore
the potential applications of this method for differentiation and classification of different tissue
pathologies other than oral malignancy. Clinical implementation of this approach for diagnostic
and monitoring purposes where tissue oxygenation is required can also be pursuit as a next step
forward.
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